Compressor Package Quick Quote Reference Sheet

This sheet is meant only as a guide. Site visits and evaluations are still recommended to ensure the proper compressor package is quoted for the application.

Step 1 Count Tools

Count the total number of tools in use at one time and we'll calculate the cfm required to operate

Tools	CFM	Tools	CFM	Tools	CFM
x 3% Impact Wrench(s) =		x 6 inch Orbital Sander(s) =		Sandblasting Nozzles	
x ¹ ⁄ ₂ Impact Wrench(s) =		x 8 inch Orbital Sander(s) =		x ³ / ₃₂ inch @ 90PSI =	
x ³ / ₄ Impact Wrench(s) =		x 7 inch Air Sander(s) =		x ¼ inch @ 90PSI =	
x 1 Impact Wrench(s) =		x 6 inch DA Sander(s) =		x ⁵ / ₃₂ inch @ 90PSI =	
x ¹ / ₄ Air Ratchet(s) =		x 7 inch DA Sander(s) =		x ³ ⁄16 inch @ 90PSI =	
x ³ / ₈ Air Ratchet(s) =		x Nail Gun(s) =		x ¼ inch @ 90PSI =	
x ¹ ⁄ ₂ Air Ratchet(s) =		x Staple Gun(s) =		x 5/16 inch @ 90PSI =	
x ¹ / ₄ Die Grinder(s) =		x ¼ Inch Nozzle		x ¾ inch @ 90PSI =	
x High Speed Grinder(s) =		Blow Gun(s) =		x ⁷ ⁄16 inch @ 90PSI =	
x 3 inch Cut Off tool(s) =		x ¹ ⁄ ₄ Air Drill(s) =		x ½ inch @ 90PSI =	
x HVLP Paint Spray Gun(s) =		x 3/8 Air Drill(s) =			
x 5 inch Orbital Sander(s) =		x ¹ ⁄ ₂ Air Drill(s) =		Total tool CFM Demand =	
Other Equipment Count ALL other equipment that u	ses air.	Other Equipment CFM =		Total CFM Demand of Equipment and Tools =	

Or Use the Technician Count Method

When using the technician only method it is critical to make sure and count **ALL** technicians that may be using tools at any one time to get a proper CFM total.

Type of tools used		Number of Techs		CFM
Impact Wrenches, Air ratchets, Staple/Nail Guns	х		=	
Grinding/Sanding/Coating Applications	х		=	
Total Technician CFM usage	х		=	

Total Air Demand for Application

Step 2 Choose Your Equipment

Reciprocating Compressor		Oil free Reciprocating Compressor			Rotary Screw Compressor			
	The maximum operating duty cycle on a reciprocating compressor is 70% optimal is 50%			The maximum operating duty cycle on a oil free reciprocating compressor is 50% optimal is 30%			The maximum operating duty cycle on a rotary screw compressor is 100%, optimal is 70%	
50% Duty Cycle	60% Duty Cycle	70% Duty Cycle	30% Duty Cycle	40% Duty Cycle	50% Duty Cycle	60% Duty Cycle	70% Duty Cycle	80% Duty Cycle

Average Compressor CFM Production per horse power							
Reciprocating	CFM@175PSI	Rotary Screw	CFM@150PSI	CFM@125PSI			
5HP	18	5HP	16	18			
7.5HP	24	7.5HP	26	28			
10HP	35	10HP	38	40			
15HP	50	15HP	54	60			
20HP	80	20HP	78	85			
25HP	95	25HP	102	108			
		30HP	125	130			
		40HP	155	160			
		50HP	185	200			
		60HP	210	235			

Quick Metric Conversions

	Amount		CFM
Liters per minute to CFM		=	
Cubic meters per minute to CFM	=		
	Amount		PSI
Bar to PSI		=	

Compressed Air Systems, LLC 2626 Skyway Drive Grand Prairie, TX, 75052 **1-800-531-9656** Fax 972-352-6364 **Simplicity. It's What We Do.**